Исследователи ВШЭ научили нейросети различать происхождение из генетически близких популяций
В Институте искусственного интеллекта и цифровых наук ФКН НИУ ВШЭ предложили новый подход, основанный на современных методах машинного обучения, для определения генетического происхождения человека. Графовые нейросети позволяют с высокой точностью различать даже очень близкие популяции.
Генетический анализ — услуга, ставшая популярной в последние 10–15 лет не только как инструмент медицинской диагностики, но и как возможность узнать больше о своем происхождении. Анализ ДНК позволяет оценить этнический состав, определить, где жили и куда переселялись предки, найти количество мутаций неандертальца в геноме.
Это стало доступно благодаря развитию современных технологий — генотипирования, систем хранения и обработки данных, машинного обучения — и значительного снижения их стоимости. Но при этом существующие методы тестирования не позволяют разделить генетически близкие, родственные популяции, которые долгое время жили на смежных территориях.
Исследователи Института ИИ и цифровых наук НИУ ВШЭ разработали метод, позволяющий различать происхождение людей из близкородственных популяций. В основе технологии — графовые нейронные сети. Алгоритм опирается не на саму последовательность ДНК, а на графы, которые обозначают генетические связи между людьми с общими участками генома. Такие участки отражают степень родства между людьми и указывают на то, сколько поколений назад у них были общие предки. Чем больше совпадений, тем ближе люди по происхождению. Вершины в модели соответствуют человеку, а ребра отражают степень родства.
Метод протестировали на данных из разных регионов. Особенно интересными оказались результаты по населению Восточно-Европейской равнины, по которым уже собрана большая база данных. Графовая нейросеть смогла точно определить популяционную принадлежность представителей генетически очень близких народов.
Алексей Шмелев
«Существующие методы генетического анализа решают иную задачу: они определяют принадлежность к крупным изолированным популяциям, например определяют, у кого в роду были французы, у кого немцы, у кого англичане. Наш метод позволяет работать с близкородственными популяциями, что особенно актуально для России, исторически многонациональной страны», — говорит Алексей Шмелев, один из авторов работы, стажер-исследователь Международной лаборатории статистической и вычислительной геномики Института ИИ и цифровых наук ФКН НИУ ВШЭ.
В дальнейшем исследователи планируют научить нейросеть предсказывать процентное соотношение различных популяций в геноме.
Исследователи зарегистрировали свою разработку под названием AncestryGNN — «Нейросетевое предсказание популяционной принадлежности по общим сегментам генома».
Владимир Щур
Как отметил заведующий Международной лабораторией статистической и вычислительной геномики Института ИИ и цифровых наук ФКН НИУ ВШЭ Владимир Щур, предложенный метод открывает новые перспективы для более точного определения популяционной истории людей и может применяться в генеалогических исследованиях и антропологии.
Работы выполнены по гранту Правительства Российской Федерации в рамках федерального проекта «Искусственный интеллект».
Вам также может быть интересно:
В НИУ ВШЭ запущены стратегические технологические проекты
Стратегические технологические проекты Высшей школы экономики реализуются в интересах достижения целевой модели развития университета и предусматривают формирование пула инновационных продуктов и услуг. Они сформированы по трем направлениям: социально-экономическое и научно-технологическое прогнозирование, технологии связи 6G и искусственный интеллект.
11 вузов России стали участниками проекта ВШЭ и «Яндекса» по применению ИИ при подготовке дипломных работ
Эксперты «Яндекс Образования» и факультета компьютерных наук НИУ ВШЭ научили студентов и научных руководителей использовать нейросеть YandexGPT в трудоемких задачах — для анализа источников, структурирования информации, визуализации данных и работы с текстом в процессе подготовки дипломов.
НИУ ВШЭ объединил ученых на международной школе по ИИ в Шанхае
В начале июля в Шанхае проходил Международный летний институт по исследованиям искусственного интеллекта в образовании, организованный Инобром НИУ ВШЭ совместно с Восточно-китайским педагогическим университетом. Более 50 молодых исследователей и ключевых спикеров из девяти стран — от России и Китая до Канады и Сингапура — собрались, чтобы обменяться последними результатами своей работы и построить новые международные партнерства.
Вышка представила «Умный ортез» на форуме «Надежда на технологии»
С 10 по 11 июля в Москве прошел юбилейный, X Национальный форум «Надежда на технологии». Мероприятие было нацелено на обсуждение инновационных достижений в сфере реабилитационной индустрии. Студенческое конструкторское бюро (СКБ) МИЭМ в сотрудничестве с Институтом когнитивных нейронаук (ИКН) ВШЭ представило «Умный ортез», который был разработан на основе запроса медиков-ортопедов.
Исследователи НИУ ВШЭ выяснили, как часто у россиян с легочной гипертензией встречаются генетические мутации
Команда ученых и медиков впервые в России провела масштабное генетическое исследование пациентов с легочной артериальной гипертензией. Исследователи, включая сотрудников Международной лаборатории биоинформатики факультета компьютерных наук НИУ ВШЭ, изучили геномы более ста пациентов и обнаружили, что примерно у каждого десятого встречаются опасные мутации в гене BMPR2, отвечающем за рост сосудов. Три мутации были описаны впервые. Исследование опубликовано в журнале Respiratory Research.
Ученые разработали ИИ для создания новых материалов
Международная команда ученых при участии НИУ ВШЭ разработала новый алгоритм машинного обучения Wyckoff Transformer для генерации симметричных кристаллов. Нейросеть позволит создавать материалы с желаемыми свойствами для полупроводников, солнечных батарей, медицинского оборудования и других высокотехнологичных областей. Ученые представят разработку 15 июля на ведущей конференции по машинному обучению ICML в Ванкувере. Препринт статьи опубликован на сайте arhiv.org, код и данные выложены под открытой лицензией.
Ученые ВШЭ выяснили, как сбои в сетях мозга влияют на когнитивное и социальное поведение при аутизме
Международная команда ученых с участием исследователей из Центра языка и мозга НИУ ВШЭ впервые изучила связи между сенсомоторной сетью и сетью когнитивного контроля у детей с аутизмом. С помощью данных фМРТ они выяснили, что внутри сети когнитивного контроля, отвечающей за внимание и самоконтроль, связи ослаблены, а внешние связи с сенсомоторной сетью, от которой зависят движения и сенсорная обработка, наоборот, слишком усилены. Эти особенности проявляются в виде трудностей в социальном взаимодействии и регуляции поведения детей. Исследование опубликовано в журнале Brain Imaging and Behavior.
«Развитие экономики без фактора ИИ уже невозможно»
В Шанхае стартовал международный летний институт по исследованиям искусственного интеллекта в образовании, организованный Институтом образования НИУ ВШЭ совместно с Восточно-китайским педагогическим университетом (ВКПУ). На него приехало свыше 50 участников и ключевых спикеров более чем из десяти стран Азии, Европы, Северной и Южной Америки. Они обсудили использование ИИ-технологий в образовании и других сферах.
Эксперты ВШЭ и РГАИС выступили за патентную защиту ИИ-решений
В НИУ ВШЭ состоялся круглый стол «Искусственный интеллект и ИТ-решения: тенденции охраны и возможности патентования». Лейтмотивом мероприятия стало признание необходимости доработки действующего отечественного законодательства в области интеллектуальной собственности на основе риск-ориентированного подхода.
Рекомендательные системы: новые алгоритмы и современная практика
Институт ИИ и цифровых наук ФКН НИУ ВШЭ провел конференцию, посвященную передовым технологиям рекомендательных систем. Мероприятие прошло в атмосфере активного обмена опытом между ведущими специалистами отрасли и позволило участникам ознакомиться с последними достижениями и практическими решениями в области разработки рекомендательных моделей.